Winemaking Analysis

Why and What to Test

John Rodrigues

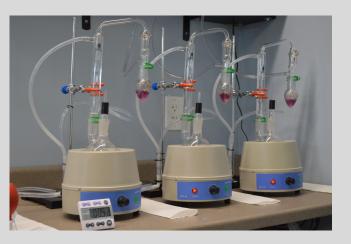
Today's Presentation!

Who We are and What We Do

Why Analyze

When to Analysis

Home Wine Lab


• We are a local laboratory specializing in routine wine analysis at reasonable prices.

We offer the following:

- Free Advice
- Next Day Results
- Courier Service
- Drop Off Locations:
 (Old Possum Brewery/ Shone Farm / Sonoma Mission Gardens)
- Society Discount (10%)

How we check your wine?

We use traditional analytical methods for checking your wine.

Aeration-Oxidation-Distillation
Apparatus

Automated Spectrometer

Cash Still

Instrument	Analysis
Digital Density Meter	Brix
Benchtop pH Meter	рН
Autotitrator	Titratable Acidity
Automated Spectrometer	Residual Sugar, L-Malic Acid, Yeast Assimilable Nitrogen
Electric Ebulliometer	Alcohol (Ethanol)
Aeration-Oxidation Apparatus	Free and Total Sulfur Dioxide
Cash Still	Volatile Acidity

Why is Analysis Important?

Best tools you have for winemaking are your senses.

Analysis is the best way to confirm your senses are correct!

Reduce Risk of Spoilage: Preventing Unwanted Characteristics

Hydrogen Sulfide (H2S) is the Rotten Egg Odor

Over Sulfuring

Brettanomyces: Band-Aid, Barnyard, Sweaty Saddle

Oxidation

Volatile Acidity (VA): Vinegar or Nail Polish

Providing Numbers for Reproducibility

• It's not hard to make wine, but to make wine that you enjoy can be difficult.

 Having knowledge about the chemical makeup of your wine can help you achieve the style you want.

Wine Analysis Chart

Major Winemaking Stages in Chronological Order

Recommend Analysis for Each Stage

Reason for Analysis

Recommend Parameters for Each Type of Analysis

Winemaking Stage

Analysis

Reason

Parameters

Analysis

Brix White 21 - 24

pН White 3.20 - 3.40

Titratable

Acidity

White 6 - 9 g/L

Grape Ripening Brix pH

Helps determine ripeness

Crush

Confirm

Brix pН TA YAN

Shows needed adjustments

> Red 6 - 7 g/L Free SO2 Based on pH

Indicates RS Completed completed Fermentation fermentation

Total SO2 White < 100 ppm Red < 120 ppm

Post-**Fermentation**

TA Alc **Adjustments** potential spoilage

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L

Volatile Acidity $< 0.70 \, g/L$ Informs SO2 adjustments

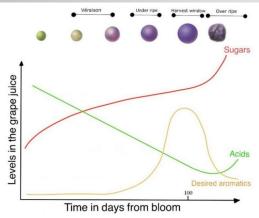
Alcohol White 12 -14 % Red 13 - 15 %

> YAN 150 - 400 ppm

Maturing: Barrel/Carboy

pH FSO2 **TSO2**

TA FSO₂


TSO2 VA Alc

pH

Final state of wine and **SO2** adjustments

Pre-Bottling

Grape Ripening

Development of sugars, acids, aromatics and berry color and weight during ripening

Visual Inspection:

Color Change (Veraison), Skin Soften, Seeds Turn Green to Brown

Chemical:

Brix = Increasing; TA = Decreasing; pH = Increasing

Stage Crush Post-

Winemaking Grape Ripening Confirm Completed Fermentation Fermentation Maturing:

TA Alc

pH

FSO₂

TSO2

TSO2

RS

VA Alc

Analysis

Brix

pH

Brix

pН

TA

YAN

RS

Barrel/Carboy

Pre-Bottling

pH TA FSO₂

Final state of wine and adjustments

Reason

Helps determine ripeness

Shows needed adjustments

fermentation

Adjustments

and

potential

spoilage

Informs SO2

adjustments

SO2

Free SO2 Indicates Based on pH completed

> **Total SO2** White < 100 ppm Red < 120 ppr

Analysis

Parameters

Brix White 21 - 24

pН White 3.20 - 3.40

Titratable

Acidity

White 6 - 9 g/L Red 6 - 7 g/L

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L

Volatile Acidity $< 0.70 \, g/L$

Alcohol White 12 -14 % Red 13 - 15 %

Crush

Visual:

Clean (No Bunch Rot, Skin Breakage, Raisining)

Chemical:

Homogenous Sample (Brix, pH, TA) Nutrient Level (YAN = Amino Nitrogen & Ammonia)

Stage Grape Ripening Crush Confirm Completed Post-Maturing:

Winemaking **Analysis** Brix Brix pH TA YAN RS ML Fermentation TA Fermentation Alc VA pH FSO₂ Barrel/Carboy **TSO2**

Pre-Bottling

pН TA **FSO2 TSO2** RS

Alc

Final state of wine and **SO2** adjustments

Reason

Helps determine ripeness

Shows needed adjustments

Adjustments

and

potential

spoilage

Informs SO2

adjustments

Free SO2 Indicates Based on pH completed fermentation

Total SO2 White < 100 ppm Red < 120 pp

Analysis

Parameters

Brix White 21 - 24

pН White 3.20 - 3.40

Titratable

Acidity

White 6 - 9 g/L Red 6 - 7 g/L

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L

Volatile Acidity < 0.70 q/L

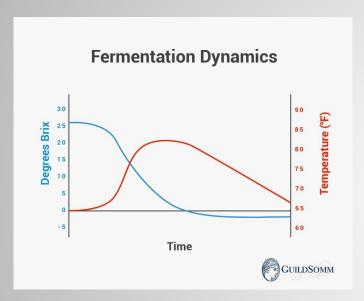
Alcohol White 12 -14 % Red 13 - 15 %

YAN 150 - 400 ppm

VA

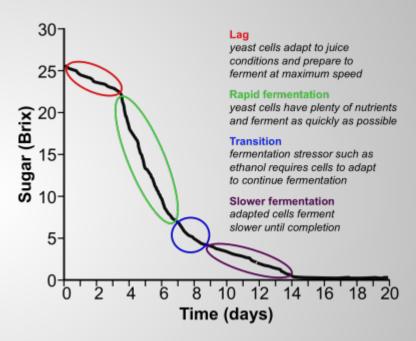
YAN

°Brix of must or	Target YAN
juice	concentration (mg/L)
21	200
23	250
25	300
27	350


Lack of Nitrogen:

Sluggish Fermentation, Off-Odors (H2S), Stuck Fermentation

Too Much Nitrogen:


Production of Acetate Ester (Nail Polish Aroma), Leftover Food for Bacteria

Fermentation

Visual Inspection:

CO2 Production (Rise in Cap) (Bubbles)

* Add Nutrients Between 18 to 13° Brix

Chemical:

Brix = Decreasing; Temperature = Increasing (not above 90 F)

Confirm Completed Fermentation

Visual Inspection:

Cap Dropping (Sinking Skins)

Chemical:

Brix Stop Moving (Same for 2-3 days in a row) Temperature = Decreases

Winemaking Stage

Analysis

Reason

Analysis Parameters

Grape Ripening Brix pH

Helps determine ripeness

Crush

Brix pН TA YAN

Shows needed adjustments

Confirm Completed Fermentation

ML

Indicates completed fermentation

Post-**Fermentation**

TA Alc **Adjustments** potential spoilage

Maturing: Barrel/Carboy

pH FSO₂ **TSO2**

pH

Informs SO2 adjustments

Pre-Bottling

TA FSO₂ **TSO2**

Final state of wine and **SO2** adjustments

Brix White 21 - 24

pН White 3.20 - 3.40

Titratable Acidity White 6 - 9 g/L Red 6 - 7 q/L

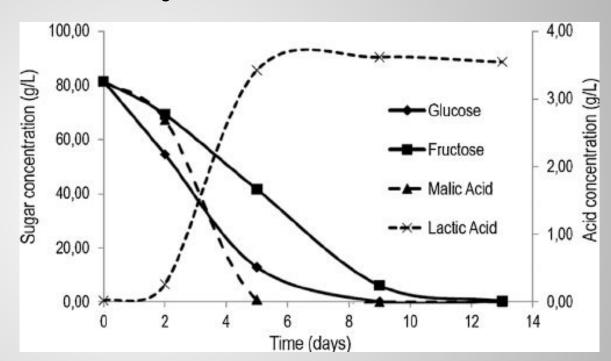
Free SO2 Based on pH

Total SO2 White < 100 ppm Red < 120 ppr

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L

Volatile Acidity $< 0.70 \, g/L$


Alcohol White 12 -14 % Red 13 - 15 %

Primary & Secondary Fermentations

Primary Fermentation = Glucose/ Fructose

Secondary Fermentation = Malic Acid

Ensure both fermenations reach safe concentration levels to prevent future problems.

Chemical:

Residual Sugar (G+F) = at or below 1 g/L L-Malic Acid = at or below 0.30 g/L

Post-Fermentation

Visual Inspection:

Taste Like Wine (Not Sweet, Too Tart, Vinegar Aroma)

Chemical:

pH and TA = Stability/ Preference; VA = Spoilage; Alcohol = Matches Intention (Benchmark) Winemaking Stage

Analysis

Reason

Analysis
Parameters

Brix White 21 - 24

pH White 3.20 - 3.40

Titratable

Acidity

White 6 - 9 g/L Red 6 - 7 g/L

Grape Ripening Brix pH TA Helps determine ripeness

Red

Crush

Confirm

Brix pH TA YAN

Shows needed adjustments

> Free SO2 Based on pH

Completed Fermentation RS ML Indicates completed fermentation

White < 100 ppm Red < 120 ppm

Post-Fermentation TA Alc VA Adjustments and potential spoilage

Residual Sugar ≤ 1 g/L

Total SO2

L-Malic Acid ≤ 0.30 g/L

Informs SO2 Volatile Acidity < 0.70 g/L

Alcohol White 12 -14 % Red 13 - 15 %

> YAN 150 - 400 ppm

Maturing: Barrel/Carboy pH FSO2 TSO2

pH

adjustments

Pre-Bottling

TA FSO2 TSO2 RS VA

Alc

Final state of wine and SO2 adjustments

Maturing:

Barrel/ Carboy

Prevent spoilage by monitoring and maintaining effective SO2 levels

Chemical:

Free & Total SO2 = Maintaining Effective Levels pH = Determines Target Free SO2 Level

* Volatile Acidity = Monitor Occasionally

Winemaking Stage

Analysis

Brix

pH

Brix

Reason

Grape Ripening

Helps determine ripeness

Crush

pН TA YAN

Shows needed adjustments

Confirm Completed Fermentation

RS

Indicates completed fermentation

Post-Fermentation

TA Alc **Adjustments** potential spoilage

Maturing: Barrel/Carboy

pH FS₀2 **TSO2**

Informs SO2 adjustments

Pre-Bottling

TA FSO₂ **TSO2** VA

Alc

pH

Final state of wine and **SO2** adjustments

Analysis Parameters

Brix White 21 - 24

рΗ White 3.20 - 3.40

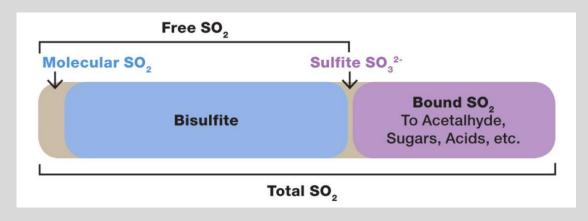
Titratable Acidity White 6 - 9 g/L Red 6 - 7 a/L

Free SO2 Based on pH

Total SO2 White < 100 ppm Red < 120 ppi

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L


Volatile Acidity $< 0.70 \, g/L$

Alcohol White 12 -14 % Red 13 - 15 %

How Does SO2 Work?

Free SO2:

 Active form that contributes to wine's stability

Bound SO2:

• Inactive form that doesn't have any antioxidant or antimicrobial activity

Total SO2:

• Free and Bound SO2 added together

SO2 Chart

Free SO2 = Active Part of SO2

pH = Affects equilibrium of cells; lower pH means higher percentage of molecular SO2 effectiveness

Molecular SO2 = Only part that is antimicrobial; small part of Free SO2

- *Sensory Effects: Too Much!!!
 - Chemical Taste (> 100 ppm Total)
 - Burnt Matchstick Smell
 - \circ > 0.8 to 1 ppm molecular SO2

рН	White Wine 0.8 ppm molecular SO ₂	Red Wine 0.5 ppm molecular S0 ₂
3	13	8
3.05	15	9
3.1	16	10
3.15	19	12
3.2	21	13
3.25	23	15
3.3	26	16
3.35	29	18
3.4	32	20
3.45	37	23
3.5	40	25
3.55	46	29
3.6	50	31
3.65	57	36
3.7	63	39
3.75	72	45
3.8	79	49
3.85	91	57
3.9	99	62

▲ FIGURE a Amount of "free SO₂" Required to Obtain the Correct Amount of Molecular SO₂ Concentration as a Function of pH in White and Red Wine.

Pre-Bottling

Last chance to change anything!

Reproducibility: reference point for future vintages

Final SO2 Adjustment: Add 5 ppm Extra

Winemaking Stage

Analysis

Reason

Grape Ripening Brix pH

Helps determine ripeness

Crush

Brix pH TA YAN

Shows needed adjustments

Confirm Completed Fermentation

RS

Indicates completed fermentation

Post-**Fermentation**

TA Alc **Adjustments** potential spoilage

Maturing: Barrel/Carboy

pH FSO₂ **TSO2**

Informs SO2 adjustments

Pre-Bottling

TA **FS02 TSO2** VA Alc

pH

Final state of wine and **SO2** adjustments

Analysis Parameters

Brix White 21 - 24

pН White 3.20 - 3.40

Titratable Acidity White 6 - 9 g/L Red 6 - 7 g/L

Free SO2 Based on pH

Total SO2 White < 100 ppm Red < 120 ppn

Residual Sugar ≤ 1 g/L

L-Malic Acid ≤ 0.30 g/L

Volatile Acidity $< 0.70 \, g/L$

Alcohol White 12 -14 % Red 13 - 15 %

Thank You!

10% Discount on All Analysis for Winemaking Societies